
D4.3 –Algorithms and architectural requirements Page 1 of 6

With the support of

Deliverable 4.3

Algorithms and architectural requirements
Lead Partner: UNIVERSITY OF SKOVDE

Authors: UNIVERSITY OF SKOVDE

Date: October 2014

Revision: V0.1

Dissemination Level PUBLIC

With the support of

Project Acronym: HELICOPTER
Project full title: HEalthy LIfe support through COmPrehensive Tracking of

individual
 and Environmental Behaviors

AAL project number: AAL-2012-5-150

D4.3 –Algorithms and architectural requirements Page 2 of 6

With the support of

Algorithms and architectural requirements of

information fusion methods
There are two part of the requirements: (i) the technical requirements associated with interfacing

with software components that can run the models employed in HELICOPTER and (ii) the

requirements on the data fed into the software components as well as data that is used for data-

generated models.

Technical requirements
There are two parts: (i) the hypothesis testing of diagnostic suspicions is based on Bayesian Belief

Networks that uses an open-source tool Genie for development and SMILE for execution and (ii) a

Java packages for anomaly detection (one is based on the incremental local outlier detection

method and the other is based on random forest classification).

The technical requirements of evaluation of Bayesian belief networks is to interface with SMILE,

either from Java or C++. The API provided is employed to set and clear evidence as well as

evaluate unknown variables based on the evidence. See appendix for an example of usage.

Concerning the Java packages, the APIs are documented in the appendix.

Data requirements

There are a number of requirements on the data fed into the reasoning:

1. Each data representing a information from an information source such as a sensor must be

timestamped.

2. Each data should be anchored to a providee with a certainty. This certainty may change

over time. This certainty should be computed based on anomaly detection based either on

incremental local outlier detection or random forest classification. For verification and

validation purposes, it is desirable to keep the history of changes to the certainty.

3. Depending on the assumptions in the reasoning, data may need to be transformed. The

following operations may need to be performed:

a. Low-pass filtering by, for example, employ a moving average window for the recent

past of the history of sensor data that is useful for making decisions in the present.

For example, if a person flushes the toilet twice in a few minutes, then this may

indicate that there is something wrong with the toilet and should be ignored.

b. To compute the frequency of events over a period of time that is meaningful to the

decision making in the present. For example, what is the frequency of flushing the

toilet associated with

D4.3 –Algorithms and architectural requirements Page 3 of 6

With the support of

c. To consider the trend over a period of time that is useful for making decision in the

present. For example, how has the average movement speed changed over the last

month?

d. To perform a spectographic analysis via, for example, fast Fourier transformation if

data can, for example, be of bursty nature and we want to analyse the various

components of the signal. This is useful if we have a continuous signal that we

measure, where changes are of bursty nature.

4. This preprocessed aggregated data can be used by the hypothesis testing either directly or

indirectly via anomaly detection. For example, if we check the frequency of toilet flushings

over a moving window of 24 hours with respect to time of day, then a normal model for

anomaly detection based on these two data can be used to detect when the frequency is

abnormal in a context. It can be useful to add other contextual data that may improve the

ability to detect anomalies (e.g., power consumption).

Sensor data and proposed aggregation functions
In the following table, the connection between the evidence indicators and information sources

outlines in the Domain Model (D4.1) is detailed out with respect to what we monitor (state or

events), if frequency should be computed, if moving average should be applied, the duration of the

time window that the processing (frequency or moving average) should be applied to1, the update

frequency and if anomaly detection should be applied. For example, at row 14, the movement

speed indicator is based on the MUSA as well as electronic gates and reads the state (movement

speed), where we employ a moving average over the last hour computed every 5 minutes. This is

fed into anomaly detection and, if there is an anomaly, the value is compared to the expected

value; if the value is less than expected, then this is an indication of decreased movability.

Evidence
indicator

Sensors Event,
state

Frequency Moving
average

Past time
window

Update
frequency

Anomaly
detection

1 Accelerometer MUSA State N Y 1h 5min Y

2 Age Configuration,
dialogue

State N N - - N

3 Catheter Configuration,
dialogue

State N N - - N

4 Diabetes Configuration State N N - - N

5 Diuresis
frequency

Dialogue, PIR,
toilet flushing

Event Y Y 24h 1h Y

1
 These are initial estimates. HELICOPTER should be configurable so that when the duration of the past

time window has been tested, then we can refine them. This will initially be done in task T4.4, where we
refine the setting by the help of simulations.

D4.3 –Algorithms and architectural requirements Page 4 of 6

With the support of

6 Fever Dialogue State N N - - N

7 Food intake Dialogue, food
diary

State N N - - N

8 Food intake:
confirmed

Dialogue, food
diary

State N N - - N

9 Food quality Dialogue, food
diary

State N N - - N

10 Gender Configuration State N N - - N

11 Hypertension

12 Insuline or
insuline
stimulating
medicine

Dialogue State N N - - N

13 Laying MUSA,
Dialogue,
Pressue sensor

Event,
state

Y Y 24h 1h Y

14 Moving speed MUSA,
Electronic gate

State Y Y 1h 5m Y

15 Open fridge at
night

Dialogue State N N - - N

16 Physical
activity

MUSA,
Dialogue,
electronic gate

Event Y Y 24h 1h Y

17 Renal failure

18 Self monitoring
not requested

Configuration,
dialogue

State N N - - N

19 Sitting MUSA,
Dialogue,
pressure sensor

Event,
state

Y Y 24h 1h Y

20 Soft drink
intake

Dialogue State N N - - N

21 Weight Scale, dialogue State N Y 7days 24h Y

The context of anomaly detection can consist of different aspects. For example, time of day, week

day and month can be used to account for variations in the weeks and months due to different

routines and typical weather type. This can be complemented with weather as well as power

consumption data. In HELICOPTER, we mainly employ time of day, week day and month for

anomaly detection. Since the algorithm is local and incremental, the normal model will be

continously updated as the providees live their daily lives.

D4.3 –Algorithms and architectural requirements Page 5 of 6

With the support of

 If anomaly detection is employed, then if there is an anomaly the value is compared to the

normal value. If the value is increased or decreased, then the value of the evidence indicator is set

to increased or decreased respectively.

Appendix - Use of Bayesian Belief Networks
For tutorials and API documents as well as installation instructions, access the Genie/SMILE

home page at https://dslpitt.org/genie/.

 Briefly, an application must load the network from the file systems. Once loaded into an object,

the hypothesis testing is performed by setting evidence of the evidence indicators and then read

the hypothesis nodes. The value of the hypothesis is compared to the output dictionary for that

hypothesis; if the value is above a threshold, then there is a risk, otherwise not. In some cases,

there may be multiple thresholds, indicating different levels of risk.

 In the following table, an example of loading the Bayesian belief network representing the

reasoning of hyperglycemia is presented.

import smile.Network;

import smile.SMILEException;

Network network=new Network();

network.readFile(PATH);

network.clearAllEvidence(); // clears all evidence

network.clearEvidence(“BodyWeight”); // clears the evidence of node with id

“BodyWeight”

network.setEvidence(“BodyWeight”,”normal_or_decrease”); // sets evidence

double hypothesisValues[]=network.getNodeValue(“Hyperglycemia”);

for (int i=0; i<hypothesisValues.length; ++i) {

 System.out.println(“Value of hypothesis \”Hyperglycemia\”, outcome

\””+network.getOutcomeId(“Hyperglycemia”,i)+”\” = “+hypothesis[i]);

}

if(hypothesisValues[n]>RISK) { // n is the index of the risk value

 // Warn

}

Appendix - Local incremental outlier detection
The java implementation of the local incremental outlier detection is under development. It will look

something like this:

https://dslpitt.org/genie/

D4.3 –Algorithms and architectural requirements Page 6 of 6

With the support of

MultiDimensionalPointType mdpt=new MultiDimensionalPointType();
mdpt.addParameter(new Parameter(“HourOfDay”,Int.class));
mdpt.addParameter(new Parameter(“WeekDay”,Int.class));
mdpt.addParameter(new Parameter(“Weight”,Double.class));

DataStream datastream=new DataStream(2,mdpt);

Vector<Euclid> data={13,1,53.7};
MultiDimensionalPoint mdp=new MultiDimensionalPoint(mdpt,data);
datastream.insertDataRecord(mdp);
if (datastream.anomaly()) {
 // there is an anomaly
}

