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Algorithms and architectural requirements of 

information fusion methods 
There are two part of the requirements: (i) the technical requirements associated with interfacing 

with software components that can run the models employed in HELICOPTER and (ii) the 

requirements on the data fed into the software components as well as data that is used for data-

generated models. 

Technical requirements 
There are two parts: (i) the hypothesis testing of diagnostic suspicions is based on Bayesian Belief 

Networks that uses an open-source tool Genie for development and SMILE for execution and (ii) a 

Java packages for anomaly detection (one is based on the incremental local outlier detection 

method and the other is based on random forest classification).  

 

The technical requirements of evaluation of Bayesian belief networks is to interface with SMILE, 

either from Java or C++. The API provided is employed to set and clear evidence as well as 

evaluate unknown variables based on the evidence. See appendix for an example of usage. 

 

Concerning the Java packages, the APIs are documented in the appendix.  

Data requirements 

There are a number of requirements on the data fed into the reasoning: 

1. Each data representing a information from an information source such as a sensor must be 

timestamped. 

2. Each data should be anchored to a providee with a certainty. This certainty may change 

over time. This certainty should be computed based on anomaly detection based either on 

incremental local outlier detection or random forest classification. For verification and 

validation purposes, it is desirable to keep the history of changes to the certainty.  

3. Depending on the assumptions in the reasoning, data may need to be transformed. The 

following operations may need to be performed: 

a. Low-pass filtering by, for example, employ a moving average window for the recent 

past of the history of sensor data that is useful for making decisions in the present. 

For example, if a person flushes the toilet twice in a few minutes, then this may 

indicate that there is something wrong with the toilet and should be ignored.  

b. To compute the frequency of events over a period of time that is meaningful to the 

decision making in the present. For example, what is the frequency of flushing the 

toilet associated with  
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c. To consider the trend over a period of time that is useful for making decision in the 

present. For example, how has the average movement speed changed over the last 

month? 

d. To perform a spectographic analysis via, for example, fast Fourier transformation if 

data can, for example, be of bursty nature and we want to analyse the various 

components of the signal. This is useful if we have a continuous signal that we 

measure, where changes are of bursty nature.  

4. This preprocessed aggregated data can be used by the hypothesis testing either directly or 

indirectly via anomaly detection. For example, if we check the frequency of toilet flushings 

over a moving window of 24 hours with respect to time of day, then a normal model for 

anomaly detection based on these two data can be used to detect when the frequency is 

abnormal in a context. It can be useful to add other contextual data that may improve the 

ability to detect anomalies (e.g., power consumption).  

Sensor data and proposed aggregation functions 
In the following table, the connection between the evidence indicators and information sources 

outlines in the Domain Model (D4.1) is detailed out with respect to what we monitor (state or 

events), if frequency should be computed, if moving average should be applied, the duration of the 

time window that the processing (frequency or moving average) should be applied to1, the update 

frequency and if anomaly detection should be applied. For example, at row 14, the movement 

speed indicator is based on the MUSA as well as electronic gates and reads the state (movement 

speed), where we employ a moving average over the last hour computed every 5 minutes. This is 

fed into anomaly detection and, if there is an anomaly, the value is compared to the expected 

value; if the value is less than expected, then this is an indication of decreased movability.  

   

 

# Evidence 
indicator 

Sensors Event, 
state 

Frequency Moving 
average 

Past time 
window 

Update 
frequency 

Anomaly 
detection 

1 Accelerometer MUSA State N Y 1h 5min Y 

2 Age Configuration, 
dialogue 

State N N - - N 

3 Catheter Configuration, 
dialogue 

State N N - - N 

4 Diabetes Configuration State N N - - N 

5 Diuresis 
frequency 

Dialogue, PIR, 
toilet flushing 

Event Y Y 24h 1h Y 

                                                
1
 These are initial estimates. HELICOPTER should be configurable so that when the duration of the past 

time window has been tested, then we can refine them. This will initially be done in task T4.4, where we 
refine the setting by the help of simulations.  
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6 Fever Dialogue State N N - - N 

7 Food intake  Dialogue, food 
diary 

State N N - - N 

8 Food intake: 
confirmed 

Dialogue, food 
diary 

State N N - - N 

9 Food quality Dialogue, food 
diary 

State N N - - N 

10 Gender Configuration State N N - - N 

11 Hypertension        

12 Insuline or 
insuline 
stimulating 
medicine 

Dialogue State N N - - N 

13 Laying MUSA, 
Dialogue, 
Pressue sensor 

Event, 
state 

Y Y 24h 1h Y 

14 Moving speed MUSA, 
Electronic gate 

State Y Y 1h 5m Y 

15 Open fridge at 
night 

Dialogue State N N - - N 

16 Physical 
activity 

MUSA, 
Dialogue, 
electronic gate 

Event Y Y 24h 1h Y 

17 Renal failure        

18 Self monitoring 
not requested 

Configuration, 
dialogue 

State N N - - N 

19 Sitting MUSA, 
Dialogue, 
pressure sensor 

Event, 
state 

Y Y 24h 1h Y 

20 Soft drink 
intake 

Dialogue State N N - - N 

21 Weight Scale, dialogue State N Y 7days 24h Y 

 

The context of anomaly detection can consist of different aspects. For example, time of day, week 

day and month can be used to account for variations in the weeks and months due to different 

routines and typical weather type. This can be complemented with weather as well as power 

consumption data. In HELICOPTER, we mainly employ time of day, week day and month for 

anomaly detection. Since the algorithm is local and incremental, the normal model will be 

continously updated as the providees live their daily lives.  
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    If anomaly detection is employed, then if there is an anomaly the value is compared to the 

normal value. If the value is increased or decreased, then the value of the evidence indicator is set 

to increased or decreased respectively.  

Appendix - Use of Bayesian Belief Networks 
For tutorials and API  documents as well as installation instructions, access the Genie/SMILE 

home page at https://dslpitt.org/genie/.  

    Briefly, an application must load the network from the file systems. Once loaded into an object, 

the hypothesis testing is performed by setting evidence of the evidence indicators and then read 

the hypothesis nodes. The value of the hypothesis is compared to the output dictionary for that 

hypothesis; if the value is above a threshold, then there is a risk, otherwise not. In some cases, 

there may be multiple thresholds, indicating different levels of risk.  

    In the following table, an example of loading the Bayesian belief network representing the 

reasoning of hyperglycemia is presented.  

 

import smile.Network; 

import smile.SMILEException; 

 

Network network=new Network(); 

 

network.readFile(PATH); 

 

network.clearAllEvidence(); // clears all evidence 

network.clearEvidence(“BodyWeight”); // clears the evidence of node with id 

“BodyWeight” 

network.setEvidence(“BodyWeight”,”normal_or_decrease”); // sets evidence  

 

double hypothesisValues[]=network.getNodeValue(“Hyperglycemia”); 

for (int i=0; i<hypothesisValues.length; ++i) { 

    System.out.println(“Value of hypothesis \”Hyperglycemia\”, outcome 

\””+network.getOutcomeId(“Hyperglycemia”,i)+”\” = “+hypothesis[i]); 

} 

 

if(hypothesisValues[n]>RISK) { // n is the index of the risk value 

    // Warn 

} 

 

Appendix - Local incremental outlier detection 
The java implementation of the local incremental outlier detection is under development. It will look 

something like this: 

https://dslpitt.org/genie/
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MultiDimensionalPointType mdpt=new MultiDimensionalPointType(); 
mdpt.addParameter(new Parameter(“HourOfDay”,Int.class)); 
mdpt.addParameter(new Parameter(“WeekDay”,Int.class)); 
mdpt.addParameter(new Parameter(“Weight”,Double.class)); 
 
DataStream datastream=new DataStream(2,mdpt); 
 
Vector<Euclid> data={13,1,53.7}; 
MultiDimensionalPoint mdp=new MultiDimensionalPoint(mdpt,data); 
datastream.insertDataRecord(mdp); 
if (datastream.anomaly()) { 
  // there is an anomaly 
} 

 

 

 


